Math, asked by janakushanabha, 7 months ago

If (x + y)/xy = 2 and (x-y)/xy = 1 , then value of x and y are​

Answers

Answered by mysticd
0

 Given \: \frac{(x+y)}{xy} = 2 \\\implies \frac{x}{xy} + \frac{y}{xy} = 2

 \implies \frac{1}{y} + \frac{1}{x} = 2 \: --(1)

 and \: \frac{(x-y)}{xy} = 1 \\\implies \frac{x}{xy} - \frac{y}{xy} = 1

 \implies \frac{1}{y} - \frac{1}{x} = 1 \: --(2)

 Add \: equations\: (1)\:and \: (2) , we \:get

 \frac{1}{y} +\cancel { \frac{1}{x} }+ \frac{1}{y} - \cancel {\frac{1}{x} }= 2 + 1

 \implies \frac{2}{y} = 3

 \implies \frac{2}{3} = y

 \implies \blue{ y = \frac{2}{3} } \: --(3)

 Subtract \: equation \:(2) \:from \: equation\:(1),\\we \:get

\frac{1}{y} +\frac{1}{x} + \Big(\frac{1}{y} - \frac{1}{x} \Big)= 2 - 1

\implies \frac{1}{y} +\frac{1}{x} - \Big(\frac{1}{y} + \frac{1}{x} \Big)=  1

 \implies \frac{2}{x} = 1

 \implies 2 = x

\blue { \implies x = 2 }

Therefore.,

 \green { Value \: of \: x = 2 }

 \green { Value \: of \: y = \frac{2}{3} }

•••♪

Similar questions