Math, asked by brijeshupadhyay77, 11 months ago

if x/y+y/x=-1 the vLue of x^3-y^3 is

Answers

Answered by Brainlyconquerer
8

Answer:

Answer x³ - y³ = 0

Step-by-step explanation:

To find:

Value of x³ - y³

 \frac{x}{y}  +   \frac{y}{x}  =  - 1 \\  \\  \frac{ {x}^{2} +  {y}^{2}  }{xy}  =  - 1 \\  \\   {x}^{2}  +  {y}^{2}  + xy = 0 \\  \\

Now use by using identity

  {x}^{3}  -  {y}^{3}  = (x - y) \times ( {x}^{2}  + xy +  {y}^{2} )

Now put value if x² + y²

\\  \\ (x - y) \times ( - xy + xy) \\  \\  = (x - y)(0) \\  \\  = 0

Answer x³ - y³ = 0

\rule{200}{1}

\boxed{\bold{\mathsf{INDENITITIES \: USED}}}

• A³ - B³ = (A-B)×(A² + AB + B²)

Answered by Shubhendu8898
8

Answer: 0

Step-by-step explanation:

Given,

\frac{x}{y}+\frac{y}{x}=-1\\\;\\\text{Taking LCM}\\\;\\\frac{x^2+y^2}{xy}=-1\\\;\\x^2+y^2=-xy\\\;\\x^2+y^2+xy=0\;\;\;\;............i)

We know that,

x^3-y^3=(x-y)(x^2+y^2+xy)\\\;\\x^3-y^3=(x-y)\times0\;\;\;\;\;\;\;[from\;\;eq.\;i)]\\\;\\x^3-y^3=0

Note:-

1.)\;\;a^3-b^3=(a-b)(a^2+b^2+ab)\\\;\\2.)\;\;a^3+b^3=(a+b)(a^2+b^2-ab)\\\;\\3.)\;\;(a+b)^3=a^3+b^3+3ab(a+b)\\\;\\4.)\;\;(a-b)^3=a^3-b^3-3ab(a-b)

Similar questions