Math, asked by abdullahgour860, 3 months ago

If x/y + y/x = -1, x, y # 0, then find the value of x cube - y cube​

Answers

Answered by animaldk
0

Answer:

x³ - y³ = 0

Step-by-step explanation:

\dfrac{x}{y}+\dfrac{y}{x}=-1\\\\\dfrac{x\cdot x}{y\cdot x}+\dfrac{y\cdot y}{x\cdot y}=-1\\\\\dfrac{x^2}{xy}+\dfrac{y^2}{xy}=-1\\\\\dfrac{x^2+y^2}{xy}=\dfrac{-1}{1}\qquad|\text{cross multipy}\\\\x^2+y^2=-xy\qquad|\text{add}\ xy\ \text{to both sides}\\\\x^2+xy+y^2=0\qquad(*)

We know:

x^3-y^3=(x-y)(x^2+xy+y^2)

Substitute (*)

x^3-y^3=(x-y)(0)=0

Similar questions