Math, asked by umamahesh2237, 11 months ago

If x^y=y^x , then show that dy/dx = y (xlogy-x)/x (ylogx-x) . ​

Answers

Answered by kaushik05
54

   \boxed{\huge\mathfrak{solution}}

Given:

 \boxed{ \bold{{x}^{y}  =  {y}^{x} }}

Take Log both sides ,

 \leadsto \:  log( {x}^{y} )  =  log( {y}^{x} )  \\  \\  \leadsto \: y \: logx = x \: logy

Now differentiate w.r.t.X both sides ,

 \leadsto \:  \frac{d}{dx} y  \: logx =  \frac{d}{dx} x \:logy

Here we use the formula:

 \boxed{   \red{\bold{\frac{d}{dx} u.v = u \:  \frac{d}{dx} v + v \:  \frac{d}{dx} u}}}

 \leadsto \: y \:  \frac{d}{dx} logx + logx \:  \frac{dy}{dx}  = x \:  \frac{d}{dx} logy     + logy \:  \frac{d}{dx} x \\  \\  \leadsto \: y \times  \frac{1}{x}  + logx \:  \frac{dy}{dx}  = x \times  \frac{1}{y}  \frac{dy}{dx}  + logy  \times 1 \\  \\  \leadsto \:  \frac{y}{x}  + logx \:  \frac{dy}{dx}  =  \frac{x}{y}  \frac{dy}{dx}  + logy \\  \\  \leadsto \: logx \frac{dy}{dx}  -  \frac{x}{y}  \frac{dy}{dx}  = logy -  \frac{y}{x}  \\  \\  \leadsto \:  \frac{dy}{dx} (logx -  \frac{x}{y} ) = logy -  \frac{y}{x}  \\  \\  \leadsto \frac{dy}{dx} ( \frac{y  \: logx - x}{y}  )=  \frac{x  \: logy - y}{x}  \\  \\   \leadsto \:  \frac{dy}{dx}  =  \frac{ \frac{x \:logy - y}{x} }{ \frac{y \: logx - x}{y} }  \\  \\  \leadsto \:  \frac{dy}{dx}  =  \frac{y}{x} ( \frac{x \: logy - y}{y \: logx - x} )

  \huge\bold{proved}

Answered by pvsn1122
2

Step-by-step explanation:

Both side take log

Ylogx=xlogy

Differentiate w.r. to x

Yd(logx)/dx+logx d(y)/dx=xd(logy)dy*dy/dx+logyd(x)/dx

Y*1/x+logx dy/dx =x*1/y*dy/dx+logy

Y/x -logy=dy/dx(x/y-log x)

Y-xlogy/x=dy/dx(x-ylogx)/y

Y/x(y-xlogy)/(x-ylogx)=dy/dx proved

Similar questions