Math, asked by kunjam9428, 11 months ago

If x+y, y+z, z+x, is in the ratio of 6:7:8 and x+y+z=14 then find the value of x

Answers

Answered by talab9n
0

Answer:

x = 14/3

y = 10/3

z = 6

Step-by-step explanation:

Assume:

x + y = 6k

y + z = 7k

x+ z = 8k

=> 2(x+y+z) = 21k = 2* 14 = 28

=> k = 28/21 = 4/3

x + y + x + z = 14k

=> x + 14 = 14k = 56/3

=> x = 56/3 - 14 = 14/3

Answered by shadowsabers03
0

\displaystyle\large\boxed {\sf {x=\dfrac {14}{3}}}

Let,

  • \displaystyle\sf {x+y=6k\quad\quad\dots (1)}

  • \displaystyle\sf {y+z=7k\quad\quad\dots (2)}

  • \displaystyle\sf {z+x=8k\quad\quad\dots (3)}

On adding these (1), (2) and (3),

\displaystyle\longrightarrow\sf {(x+y)+(y+z)+(z+x)=6k+7k+8k}

\displaystyle\longrightarrow\sf {2(x+y+z)=21k\quad\quad\dots (4)}

But given that,

  • \displaystyle\sf {x+y+z=14\quad\quad\dots (5)}

Thus (4) becomes,

\displaystyle\longrightarrow\sf {21k=2\times 14}

\displaystyle\longrightarrow\sf {21k=28}

\displaystyle\longrightarrow\sf {k=\dfrac {4}{3}\quad\quad\dots (6)}

Substituting (6) in (2),

\displaystyle\longrightarrow\sf {y+z=7\times\dfrac {4}{3}}

\displaystyle\longrightarrow\sf {y+z=\dfrac {28}{3}\quad\quad\dots(7)}

Hence, on subtracting (7) from (5),

\displaystyle\longrightarrow\sf {(x+y+z)-(y+z)=14-\dfrac {28}{3}}

\displaystyle\longrightarrow\sf {\underline {\underline {x=\dfrac {14}{3}}}}

Similar questions