If x+y+z=0 prove that x(cube)+y(cube)+z(cube)=3xyz
Answers
Answered by
1
x+y+z=0 --------(1)
lhs = x^3+y^3+z^3
= (x+y+z)(x^2+y^2+z^2 -xy-yz-zx)+3xyz [ identity]
= 0(x^2+y^2+z^2 -xy-yz-zx) +3xyz [from (1)]
= 3xyz
=rhs
lhs = x^3+y^3+z^3
= (x+y+z)(x^2+y^2+z^2 -xy-yz-zx)+3xyz [ identity]
= 0(x^2+y^2+z^2 -xy-yz-zx) +3xyz [from (1)]
= 3xyz
=rhs
Answered by
2
Given, x3 + y3 + z3 = 3xyz
Therefore, x3 + y3 + z3 - 3xyz =0
This means,
x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
Now if x + y + z = 0, then......
x3 + y3 + z3 - 3xyz = ( 0 ) (x2 + y2 + z2 - xy - yz - zx) . . . . . . .... ..... ... .. . . .. . ..... [ subsituting the value of x + y + z ]
x3 + y3 + z3 - 3xyz = 0
x3 + y3 + z3 = 3xyz .
Similar questions