Math, asked by bluegyalaakPunnika, 1 year ago

If x+y+z=0 prove that x(cube)+y(cube)+z(cube)=3xyz

Answers

Answered by mysticd
1
x+y+z=0 --------(1)

lhs = x^3+y^3+z^3
 = (x+y+z)(x^2+y^2+z^2 -xy-yz-zx)+3xyz  [ identity]
= 0(x^2+y^2+z^2 -xy-yz-zx) +3xyz [from (1)]

= 3xyz 
=rhs

Answered by Arshad2003
2

Given, x3 + y3 + z3 = 3xyz


Therefore, x3 + y3 + z3 - 3xyz =0


This means,

x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)


Now if x + y + z = 0, then......


x3 + y3 + z3 - 3xyz = ( 0 ) (x2 + y2 + z2 - xy - yz - zx)  . . . . . . .... ..... ... .. . . .. . .....    [ subsituting the value of x + y + z ]


x3 + y3 + z3 - 3xyz = 0   


x3 + y3 + z3 = 3xyz .  


Similar questions