Math, asked by navadeep09852, 2 months ago

If x+y+z=0, prove that x3 + y3 + z3 = 3xyz.

Answers

Answered by nidalismailn
1

Answer:

Step-by-step explanation:

Given, x3 + y3 + z3 = 3xyz

Therefore, x3 + y3 + z3 - 3xyz =0

This means,

x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

Now if x + y + z = 0, then

x3 + y3 + z3 - 3xyz = ( 0 ) (x2 + y2 + z2 - xy - yz - zx)     [subsituting the value of x + y + z ]

x3 + y3 + z3 - 3xyz = 0    

x3 + y3 + z3 = 3xyz .  

Similar questions