Math, asked by bhoomi79, 11 months ago

if x+y+z=0. show that x^3 + y^3 + z^3= 3xyz​

Answers

Answered by Anonymous
7

Solution :-

x + y + z = 0

⇒ x + y = - z --- eq(1)

Cubing on both sides

⇒ (x + y)³ = (-z)³

⇒ x³ + y³ + 3xy(x + y) = - z³

[ Because (x + y)³ = x³ + y³ + 3xy(x + y) ]

⇒ x³ + y³ + 3xy(-z) = - z³

[ From eq(1) ]

⇒ x³ + y³ - 3xyz = - z³

⇒ x³ + y³ + z³ = 3xyz

Hence shown.

Answered by Anonymous
3

 \bf Given :  \\  x + y + z = 0

 \bf To \:  prove :  \\  {x}^{3}  +  {y}^{3}  +  {z}^{3}  = 3xyz

 \bf Solution :  \\ \Rightarrow x + y + z = 0 \\  \\  \Rightarrow x + y =  - z \\  \\  \bf cubing \: both \: side \\  \\  \Rightarrow {(x + y)}^{3}  =   { - z}^{3}  \\  \\ \Rightarrow  {x}^{3}  +  {y}^{3} + 3xy(x + y) =  { - z}^{3}   \\  \\   \bf replace \: x + y \: with \:  - z \\  \\   \Rightarrow{x}^{3}  +  {y}^{3}  + 3xy( - z) =  { - z}^{3}  \\  \\ \Rightarrow  {x}^{3}  +   {y}^{3}  - 3xyz =  -  {z}^{3}  \\  \\  \bf \boxed{\Rightarrow  {x}^{ 3 }  +  {y}^{ 3}  +  {z}^{3}  = 3xyz}

 \bf Hence  \: proved

Similar questions