Math, asked by ayuvi002, 1 year ago

If x+y+z = 0, show that x*3+y*3+z*3=3xyz. Please answer

Answers

Answered by sweta3656
5
x*3+y*3+z*3-3xyz=(x+y+z)(x*2+y*2+z*2-xy-yz-zx)
x*3+y*3+z*3-3xyz=(0)(x*2+y*2+z*2-xy-yz-zx)
x*3+y*3+z*3-3xyz=0
x*3+y*3+z*3=3xyz
I hope this helps you.
please Mark me as a brainliest.

sweta3656: ok
Answered by Arshad2003
0

Given, x3 + y3 + z3 = 3xyz


Therefore, x3 + y3 + z3 - 3xyz =0


This means,

x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)


Now if x + y + z = 0, then......


x3 + y3 + z3 - 3xyz = ( 0 ) (x2 + y2 + z2 - xy - yz - zx)  . . . . . . .... ..... ... .. . . .. . .....    [ subsituting the value of x + y + z ]


x3 + y3 + z3 - 3xyz = 0   


x3 + y3 + z3 = 3xyz .  


Read more on Brainly.in - https://brainly.in/question/536328#readmore

Similar questions