Math, asked by nathmishita5, 12 days ago

If x+y+z=0 show that x cube +y cube+z cube = 3xyz

Answers

Answered by ItzSameeksha01
17

{\large{\bold{\bf{\underbrace{Given :-}}}}}

x + y + z = 0

{\large{\bold{\bf{\underbrace{To \: prove :-}}}}}

x³ + y³ + z³ = 3xyz

{\large{\bold{\bf{\underbrace{Proof :-}}}}}

\pink\dashrightarrowx + y + z = 0

\pink\dashrightarrowx + y = - z --( 1 )

\bold\purple{Cube \: both \:sides}

\pink\dashrightarrow(x + y)³ = (- z)³

\quad\bigstar{\underline{\boxed{\green{\sf{Identity \: of \: (x + y)³ = x³ + y³ + 3xy (x + y) }}}}}

\pink\dashrightarrowx³ + y³ + 3xy (x + y) = (- z)³ ----------- ( 2 )

\pink\dashrightarrowx³ + y³ + 3xy × -z = - z³

\pink\dashrightarrow x³ + y³ - 3xyz = - z³

\pink\dashrightarrow x³ + y³ + z³ = 3xyz

\bold\red{Hence \: proved}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions