If x+y+z =0, show that x3 +y3+z3 =3xyz.
Answers
Answered by
4
Answer:
hope it helps you
Step-by-step explanation:
Acc to identity -
X3 + y3 + c3 - 3xyz = ( x+y+z )(x2 + y2 + z2 - xy - yz - zx )
here x + y + z = 0
therefore, X3 + y 3 + z3 - 3 xyz = 0 * ( x2 + y2 + z2 - xy - yz - zx )
X3 + y3 + z3 - 3 xyz = 0
X3 + y3 + z3 = 3xyz
Answered by
4
x + y + z = 0
» x³ + y³ + z³ - 3xyz
= (x + y + z) (x² + y² + z² - xy - yz - zx)
But, x + y + z = 0
» x³ + y³ + z³ - 3xyz
= (0) (x² + y² + z² - xy - yz - zx)
» x³ + y³ + z³ - 3xyz = 0
Therefore, x³ + y³ + z³ = 3xyz
Similar questions