if x+y+z=0 show that x3+y3z3
Answers
Answered by
1
Answer:
3xyz
Step-by-step explanation:
x³+y³+z³
=(x+y)³-3xy(x+y)+z³
= (x+y)³+z³ - 3x²y - 3xy²
= (x+y+z)³-3(x+y)z(x+y+z)- 3x²y - 3xy²
= (x+y+z)³-3(xz+yz)(x+y+z)- 3x²y - 3xy²-3xyz+3xyz
= (x+y+z)³-3(xz+yz)(x+y+z)- 3xy(x+y+z)+3xyz
= (x+y+z){(x+y+z)²-3xy-3yz-3xz}+3xyz
= (x+y+z)(x²+y²+z²-xy-yz-xz)+3xyz
if x+y+z=0; (x+y+z)(x²+y²+z²-xy-yz-xz) = 0
so, x³+y³+z³= 3xyz
Similar questions