Math, asked by pratyasadas1234, 2 months ago

If x+y+z=0
show x^3+y^3+z^3=3xyz​

Answers

Answered by tejeswarteju
2

x + y + z = 0

x + y =  - z

cubing \: on \: both \: sides

(x + y) { }^{3}  = ( - z) {}^{3}

x {}^{3}  +  {y}^{3}  + 3xy(x + y) =  - z {}^{3}

x {}^{3}  +  {y}^{3}  + 3xy( - z) =  { - z}^{3}

 {x}^{3}  +  {y}^{3}  - 3xyz =  - z {}^{3}

 {x}^{3}  +  {y}^{3}  + z {}^{3}  = 3xyz

hence proved.

Similar questions