Math, asked by kannanchellappan2012, 1 year ago

if (x+y+z)=0,then prove that x^3+^3+z^3=3xyz​

Answers

Answered by praneethks
2

Step-by-step explanation:

x + y + z = 0 =  > x + y =  - z

Cubing on both sides we get

(x + y)^{3} =  -  {z}^{3} =  >  {x}^{3} +  {y}^{3} +

3xy(x + y) =-  {z}^{3}  =  >  {x}^{3} +  {y}^{3} +  {z}^{3}

 =  - 3xy(x + y) =  >  {x}^3 +  {y}^{3} +  {z}^{3} =

3xyz  \: since \: x + y =  - z

Hence proved. Hope it helps you.

Answered by Anonymous
21

\bf{\large{\underline{\underline{Correct \: Question:-}}}}

If x + y + z = 0, then prove that x³ + y³ + z³ = 3xyz

\bf{\large{\underline{\underline{GIVEN:-}}}}

x + y + z = 0

\bf{\large{\underline{\underline{REQUIRED \: TO \: PROVE:-}}}}

x³ + y³ + z³ = 3xyz

\bf{\large{\underline{\underline{PROOF:-}}}}

  \tt x + y + z = 0

Add - z on both the sides

  \tt x + y + z - z  = 0 - z

  \tt x + y + 0  =- z

  \tt x + y =- z.....(1)

Cubing on both sides

  \tt (x + y)^{3}  =(- z)^{3}

We know that (a + b)³ = a³ + b³ + 3ab(a + b)

Here a = x, b = y

By substituting the values in the identity we have

 \tt  {(x)}^{3} +  {(y)}^{3} + 3xy(x + y) =  -  {z}^{3}

 \tt  {x}^{3} +  {y}^{3} + 3xy(x + y) =  -  {z}^{3}

 \tt  {x}^{3} +  {y}^{3} + 3xy( - z) =  -  {z}^{3}

[From. eq(1) i.e x + y = -z]

 \tt  {x}^{3} +  {y}^{3} - 3xyz =  -  {z}^{3}

Add - 3xyz on both sides

 \tt  {x}^{3} +  {y}^{3} - 3xyz + 3xyz =  -  {z}^{3} + 3xyz

 \tt  {x}^{3} +  {y}^{3} =  -  {z}^{3} + 3xyz

Add z³ on both sides

 \tt  {x}^{3} +  {y}^{3} +  {z}^{3}  =  -  {z}^{3} + 3xyz +  {z}^{3}

 \tt  {x}^{3} +  {y}^{3} +  {z}^{3}  =3xyz

Hence Proved

Similar questions