IF x+y+z=0 then prove that x³+y³+z³=3xyz
Answers
Answered by
113
given
x+y+z=0. ------(1)
then
x+y= -z
cubing on both side
(x+y)^3= -z^3
formula =(x+y)^3= x^3+3xy(x+y)+ y^3
so here also
x^3+3xy(x+y)+y^3 = -z^3
x^3+3xy( -z)+y^3= -z^3
hence
x^3+ y^3+ z^3== 3xyz
proved
x+y+z=0. ------(1)
then
x+y= -z
cubing on both side
(x+y)^3= -z^3
formula =(x+y)^3= x^3+3xy(x+y)+ y^3
so here also
x^3+3xy(x+y)+y^3 = -z^3
x^3+3xy( -z)+y^3= -z^3
hence
x^3+ y^3+ z^3== 3xyz
proved
Answered by
42
Answer:given
x+y+z=0. ------(1)
then
x+y= -z
cubing on both side
(x+y)^3= -z^3
formula =(x+y)^3= x^3+3xy(x+y)+ y^3
so here also
x^3+3xy(x+y)+y^3 = -z^3
x^3+3xy( -z)+y^3= -z^3
hence
x^3+ y^3+ z^3== 3xyz
proved
Similar questions