If x+y+z=0 then prove x^3+y^3+z^3=3xyz
Answers
Answered by
8
we know that,
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
put x+y+z=0
therefore, x^3+y^3+z^3-3xyz = (0)(x^2+y^2+z^2-xy-yz-zx)
x^3+y^3+z^3-3xyz = 0
x^3+y^3+z^3=3xyz
hence proved
pls mark as brainliest :)
Answered by
2
Given, x3 + y3 + z3 = 3xyz
Therefore, x3 + y3 + z3 - 3xyz =0
This means,
x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
Now if x + y + z = 0, then......
x3 + y3 + z3 - 3xyz = ( 0 ) (x2 + y2 + z2 - xy - yz - zx) . . . . . . .... ..... ... .. . . .. . ..... [ subsituting the value of x + y + z ]
x3 + y3 + z3 - 3xyz = 0
x3 + y3 + z3 = 3xyz .
Similar questions