Math, asked by GGISStudent, 1 year ago

If x+y+z=0 then prove x^3+y^3+z^3=3xyz

Answers

Answered by bangtan007
8

we know that,

x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)

put x+y+z=0

therefore, x^3+y^3+z^3-3xyz = (0)(x^2+y^2+z^2-xy-yz-zx)

x^3+y^3+z^3-3xyz = 0

x^3+y^3+z^3=3xyz

hence proved

pls mark as brainliest :)

Answered by Arshad2003
2

Given, x3 + y3 + z3 = 3xyz


Therefore, x3 + y3 + z3 - 3xyz =0


This means,

x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)


Now if x + y + z = 0, then......


x3 + y3 + z3 - 3xyz = ( 0 ) (x2 + y2 + z2 - xy - yz - zx)  . . . . . . .... ..... ... .. . . .. . .....    [ subsituting the value of x + y + z ]


x3 + y3 + z3 - 3xyz = 0   


x3 + y3 + z3 = 3xyz .  

Similar questions