Math, asked by swapnilsinghparihar5, 11 days ago

if x+y+z=0 then show that x^2/yx+y^2/xz+z^2/yx=3​

Answers

Answered by jitendra12iitg
0

Answer:

See the explanation

Step-by-step explanation:

Given  x+y+z=0

To prove

         \dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=3

We know that, If x+y+z=0, then x^3+y^3+z^3=3xyz ...(1)

Now

            \text{LHS}=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}

                     =\dfrac{x^3+y^3+z^3}{xyz}, taking LCM and simplifying

                     =\dfrac{3xyz}{xyz}=3=\text{RHS} using (1)

Hence proved

Similar questions