If (x+y+z)=0, then show that x^3+y^3+z^3=3xyz
Answers
Answered by
22
To Show : x+y+z=0,then x³+y³+z³=3xyz
Identity to be used =
x³+y³+z³-3xyz = (x+y+z)(x²+y²+z²-xy-yz-xz)
Substitute x³+y³+z³=0 in
x³+y³+z³-3xyz = (x+y+z)(x²+y²+z²-xy-yz-xz)
x³+y³+z³-3xyz =0= (x+y+z)(x²+y²+z²-xy-yz-xz)
# x³+y³+z³ - 3xyz = 0
x³+y³+z³ = 3xyz
#Hence Verified .
Identity to be used =
x³+y³+z³-3xyz = (x+y+z)(x²+y²+z²-xy-yz-xz)
Substitute x³+y³+z³=0 in
x³+y³+z³-3xyz = (x+y+z)(x²+y²+z²-xy-yz-xz)
x³+y³+z³-3xyz =0= (x+y+z)(x²+y²+z²-xy-yz-xz)
# x³+y³+z³ - 3xyz = 0
x³+y³+z³ = 3xyz
#Hence Verified .
hhhhhhhjjjjjjjj:
thank you beautiful girl
Answered by
22
Given that x + y + z = 0
= > x + y = - z -----: ( 1 )
Cube on both sides ,
= > ( x + y )³ = ( - z )³
= > ( x )³ + ( y )³ + 3xy( x + y ) = - z³
Putting the value of ( x + y ) from ( 1 ) ,
= > x³ + y² + 3xy( - z ) = - z³
= > x³ + y³ - 3zxy = -z³
= > x³ + y³ + z³ = 3xyz
Hence, Proved.
= > x + y = - z -----: ( 1 )
Cube on both sides ,
= > ( x + y )³ = ( - z )³
= > ( x )³ + ( y )³ + 3xy( x + y ) = - z³
Putting the value of ( x + y ) from ( 1 ) ,
= > x³ + y² + 3xy( - z ) = - z³
= > x³ + y³ - 3zxy = -z³
= > x³ + y³ + z³ = 3xyz
Hence, Proved.
Similar questions