if x+y+z=0 then show x^3+y^3+z^3=3xyz
Answers
As we know the formula of
x³ + y³ + z³ - 3xyz = (x + y + z ) ( x² + y² + z² -xy - yz - zx )
If x + y + z = 0 then
x³ + y³ + z³ - 3xyz = 0 ( x²+y² + z² -xy -yz -zx)
x³ + y³ + z³ -3xyz = 0
Tranpose -3xyz to RHS
x³ + y³ + z³ = 3xyz
Hence proved
By the formula of x³ + y³ + z³ - 3xyz = (x + y + z ) ( x² + y² + z² -xy - yz - zx ) we can prove
Know more :-
(a+ b)² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
a³ + b³ = ( a+b) (a²-ab+b²)
a³-b³ = (a - b) (a² + ab + b²)
If x + y + z = 0.
show that :-
We know that :-
Now put x + y + z = 0
Hence, Proved
Hope this helps you.
# By Sparkly Princess