If x+y+z=0 then what is the value of x^3+y^3+z^3?
Answers
Answered by
3
If x+y+z=0 then x^3+y^3+z^3=3xyz
Prove: x^3+y^3+z^3-3xyz= (x+y+z)(x^2+y^2+z^2-xy-yz-xz)
LHS
(0)(“)
=0
X^3+y^3+z^3-3xyz=0
X^3+y^3+z^3=3 xyz
All the best!
suhanisaxena112:
Plz mark it as the brainiest
Answered by
1
Heya mate,Here is ur answer
x+y+z=0
x+y=-z
Cubing both the sides
(x+y)^3= (-z)^3
x^3 +y^3 +3xy(x+y) = -z^3
But x+y=-z
x^3 +y^3 +3xy(-z)=-z^3
x^3+y^3-3xyz=-z^3
x^3 +y^3 +z^3 = 3xyz
=========================
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
x+y+z=0
x+y=-z
Cubing both the sides
(x+y)^3= (-z)^3
x^3 +y^3 +3xy(x+y) = -z^3
But x+y=-z
x^3 +y^3 +3xy(-z)=-z^3
x^3+y^3-3xyz=-z^3
x^3 +y^3 +z^3 = 3xyz
=========================
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
Similar questions