if x+y+z=0,then x^3+y^3+z^3=??
Answers
Answered by
3
If ( x + y + z ) = 0
Then, x³ + y³ + z³ = 3 xyz.
Proof :
Given,
⇒ x + y + z = 0
⇒ x + y = ( -z ) ------- ( 1 )
By squaring both sides ,
⇒ ( x + y )³ = ( -z )³
⇒ x³ + y³ + 3 xy ( x + y ) = -z³
⇒ x³ + y³ + z³ + 3xy ( x + y ) = 0
By substituting the value of ( 1 )
⇒ x³ + y³ + z³ + 3 xy ( -z ) = 0
⇒ x³ + y³ + z³ - 3 xyz = 0
∴ x³ + y³ + z³ = 3 xyz.
Proved.
Then, x³ + y³ + z³ = 3 xyz.
Proof :
Given,
⇒ x + y + z = 0
⇒ x + y = ( -z ) ------- ( 1 )
By squaring both sides ,
⇒ ( x + y )³ = ( -z )³
⇒ x³ + y³ + 3 xy ( x + y ) = -z³
⇒ x³ + y³ + z³ + 3xy ( x + y ) = 0
By substituting the value of ( 1 )
⇒ x³ + y³ + z³ + 3 xy ( -z ) = 0
⇒ x³ + y³ + z³ - 3 xyz = 0
∴ x³ + y³ + z³ = 3 xyz.
Proved.
Anonymous:
:)
Answered by
1
If, x+y+z=0
then, x^3+y^3+z^3 = 3 xyz
as we know,
x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)
Put x+y+z =0 (Given)
x^3 + y^3 + z^3 - 3xyz = (0)(x^2 + y^2 + z^2 - xy - xz - yz)
x^3 + y^3 + z^3 - 3xyz = 0
x^3 + y^3 + z^3 = 3xyz (Proved)
Hope it helps
then, x^3+y^3+z^3 = 3 xyz
as we know,
x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)
Put x+y+z =0 (Given)
x^3 + y^3 + z^3 - 3xyz = (0)(x^2 + y^2 + z^2 - xy - xz - yz)
x^3 + y^3 + z^3 - 3xyz = 0
x^3 + y^3 + z^3 = 3xyz (Proved)
Hope it helps
Similar questions