If x+y+z=0 then x^3+y^3+z^3-3xyz=?
Please step by step explain
Answers
Answered by
1
Answer:
If x+y+z=0 then x³+y³+z³-3xyz=0
x³+y³+z³=3xyz
Step-by-step explanation:
Answered by
10
Answer:
x^3 + y^3 + z^3 - 3xyz = 0
Step-by-step explanation:
Given, x^3 + y^3 + z^3 = 3xyz
Therefore, x^3 + y^3 + z^3 - 3xyz =0
This means,
x^3 + y^3 + z^3 - 3xyz = (x + y + z)•(x^2 + y^2 + z^2 - xy - yz - zx)
Now if x + y + z = 0, then......
x^3 + y^3 + z^3 - 3xyz = ( 0 ) (x^2 + y^2 + z^2 - xy - yz - zx) . . . . . . .... ..... ... .. . . .. . ..... [ subsituting the value of x + y + z ]
x^3 + y^3 + z^3 - 3xyz = 0
x^3 + y^3 + z^3 = 3xyz .
=> x^3 + y^3 + z^3 - 3xyz = 0
Hence, proved.
Similar questions