Math, asked by tanvimahajan302, 7 months ago

If x+y+z=0 then x^3+y^3+z^3 is

Answers

Answered by varad032005
1

Answer:

Step-by-step explanation:

if x+y+z = 0

then x³+y³+z³ = 3xyz

Answered by Anonymous
4

Question :

If \bf{x + y + z = 0} , then find the value of \bf{x^{3} + y^{3} + z^{3}}

Given :

\underline{\bf{x + y + z = 0}}

To Find :

\underline{\boxed{\bf{x + y + z = 0}}}

Solution :

Given Equation :

By subtracting (z) from both the sides of the Equation , we get :\\ \\

\implies \bf{x + y + z - z = 0 - z} \\ \\ \\

\implies \bf{x + y + \not{z} - \not{z} = 0 - z} \\ \\ \\

\implies \bf{x + y  = 0 - z} \\ \\ \\

\implies \bf{x + y = - z} \\ \\ \\

Now , by cubing on both the sides , we get :\\ \\

\implies \bf{(x + y)^{3} = (- z)^{3}} \\ \\ \\

But we know that :\\ \\

\bf{(a + b)^{3} = a^{3} + b^{3} + 3ab(a + b)}

So , by substituting this value of \bf{(a + b)^{3}} , we get :\\ \\

\implies \bf{x^{3} + x^{3} + 3xy(x + y) = (- z)^{3}} \\ \\ \\

From the Equation \bf{x + y + z = 0} , we get :\\ \\

⠀⠀⠀:\implies \bf{x + y + z = 0}

⠀⠀⠀:\implies \bf{x + y = - z}

Hence, the value of (x + y) is -z .

Now , putting the value of (x + y) in the equation , we get :\\ \\

\implies \bf{x^{3} + x^{3} + 3xy(-z) = (- z)^{3}} \\ \\ \\

\implies \bf{x^{3} + x^{3} - 3xyz = (- z)^{3}} \\ \\ \\

Now , by adding (z³) on both the sides , we get :\\

\implies \bf{x^{3} + x^{3} - 3xyz + z^{3} = (- z)^{3} + z^{3}} \\ \\ \\

\implies \bf{x^{3} + x^{3} - 3xyz + z^{3} = (- \not{z})^{3} + \not{z}^{3}} \\ \\ \\

\implies \bf{x^{3} + x^{3} - 3xyz + z^{3} = 0} \\ \\ \\

Then , by adding (3xyz) in both the sides , we get :\\ \\

\implies \bf{x^{3} + x^{3} - 3xyz + z^{3} + 3xyz = 0 + 3xyz} \\ \\ \\

\implies \bf{x^{3} + x^{3} + z^{3}= 3xyz} \\ \\ \\

\underline{\therefore \bf{x^{3} + x^{3} + z^{3}= 3xyz}} \\ \\

Hence, the value of (x³ + y³ + z³) is 3xyz.

Similar questions