Math, asked by charanadari2007, 1 month ago

If x + y + z = 0 then x³ + y³ + z³ =​

Answers

Answered by ItzSameeksha01
154

\boxed{\bf{\red{If \: x + y + z = 0 \: then \:  x³ + y³ + z³ = 3xyz}}}

If x + y + z = 0 then x³ + y³ + z³ = 3xyz

\pink\dashrightarrow x + y + z = 0

\pink\dashrightarrow x + y = - z --( 1 )

\bold\purple{Cube \: both \:sides}

\pink\dashrightarrow (x + y)³ = (- z)³

\quad\bigstar{\underline{\boxed{\green{\sf{Identity \: of \: (x + y)³ = x³ + y³ + 3xy (x + y) }}}}}

\pink\dashrightarrow x³ + y³ + 3xy (x + y) = (- z)³ ----------- ( 2 )

\pink\dashrightarrow x³ + y³ + 3xy × -z = - z³

\pink\dashrightarrow x³ + y³ - 3xyz = - z³

\pink\dashrightarrow x³ + y³ + z³ = 3xyz

\bold\red{Hence \: proved}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by snehaprajnaindia204
1

Answer║

x³ + y³ + z³ = 3xyz

Step-by-step explanation :-

We have,

 x + y + z = 0

⇒ x + y = - z  ____(1)

Taking whole cube on both sides -

(x + y)³ = (-z)³

⇒ x³ + y³ + 3xy(x+y) = (-z)³

⇒ x³ + y³ + z³ = -3xy(x+y) ___(2)

From equation (1)  we have :-

x + y = -z

Now equation (2) becomes :-

x³ + y³ + z³ = -3xy(-z)

⇒ x³ + y³ + z³ = 3xyz

_____..._____

Hope it helps you !!

Similar questions