If x+y+z=0, xyz=1 then prove that (1-x³)‐¹+(1-y³)‐¹+(1-z³)‐¹
Answers
Answered by
62
Given :-
- x + y + z = 0
- xyz = 1 .
To Find :-
- (1-x³)‐¹+(1-y³)‐¹+(1-z³)‐¹ ?
Formula used :-
- 1+ω+ω² = 0
- ω³ⁿ= 1 ( n = natural Number).
- ω = Omega .
- (a)‐¹ = 1/a .
- [(a)^b]^c = (a)^(b*c)
- 1/0 = ∞
Solution :-
→ x + y + z = 0 = 1+ω+ω²
Comparing we get :-
→ x = 1
→ y = ω
→ z = ω²
Putting These value we get :-
→ (1-x³)‐¹+(1-y³)‐¹+(1-z³)‐¹
→ 1/(1 - x³) + 1/(1 - y³) + 1/(1 - z³)
→ 1/( 1 - 1) + 1/(1 - ω³) + 1/{1 - (ω²)³}
→ 1/( 1 - 1) + 1/(1 - 1) + 1/{1 - (ω^6)}
→ 1/( 1 - 1) + 1/(1 - 1) + 1/(1 - 1)
→ 1/0 + 1/0 + 1/0
→ ∞
Hence, Required Answer is ∞ (infinity).
Similar questions