If x+y+z=1, x^2+y^2+z^2= 2 and x^3+y^3+z^3=3. Then find the value of xyz
Answers
Answered by
24
x + y + z = 1
x² + y² + z² = 2
x³ + y³ + z³ = 3
________ [GIVEN]
We have to find xyz
_______________________________
x + y + z = 1
• Squaring on both sides
We know that (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
=> (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
=> (1)² = 2 + 2(xy + yz + zx)
=> 1 = 2 + 2(xy + yz + zx)
=> - 1 = 2(xy + yz + zx)
=> xy + yz + zx =
_____________________________
Also..
x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
=> x³ + y³ + z³ - 3xyz = (x + y + z) [x² + y² + z² - (xy + yz + zx)]
Now put the known values in above eq
=> 3 - 3xyz = (1) [(2) -
=> 3 - 3xyz = 1 ×
=> - 3xyz = - 3
=> - 3xyz =
=> - xyz =
______________________________
xyz =
__________ [ANSWER]
Similar questions