if x+y+z= -1, xy+yz+zx= -1,xyz= -1 find x^3 +y^3 +z^3
Answers
Answer:
⇒ x³ + y³ + z³ = - 7
Step-by-step explanation:
Given :
If,
x + y + z = -1,
xy + yz + zx = -1,
xyz = -1
Then, find : x³ + y³ + z³
Solution :
We know that,
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ac)
By substituting,
a = x , b = y , c = z,.
⇒ x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
To equate this,
We need to find the value of : x² + y² + z²
We know that,
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
By substituting,
a = x , b = y , c = z,.
We get,
⇒ (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
⇒ (x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ (-1)² = x² + y² + z² + 2(-1)
⇒ 1 = x² + y² + z² - 2
⇒ 1 + 2= x² + y² + z²
⇒ x² + y² + z² = 3 ...(i)
__
x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⇒ x³ + y³ + z³ = (x + y + z)(x² + y² + z² - (xy + yz -+ zx)) + 3xyz
⇒ x³ + y³ + z³ = (-1) ((3) - (-1)) + 3(-1)
⇒ x³ + y³ + z³ = (-1) (3 + 1) - 3
⇒ x³ + y³ + z³ = (-1) (4) - 3
⇒ x³ + y³ + z³ = - 4 - 3
⇒ x³ + y³ + z³ = - 7