if x+y+z=1 , xy+yz+zx=-1and xyz= -1 find the value of x³+y³+z³
Answers
Answered by
248
x3+y3+z3-3xyz= (x + y + z) (x2 +y2 + z2 yz zx xy)
x3+y3+z3=(x +y + z) (x2+y2+ z2yz zx xy) + 3xyz ( Rearranging the terms)
Putting the values,
x3+y3+z3= (1) {(x2+y2+ z2- ( -1)} +3 (-1)
x3+y3+z3= (1) (x2+y2+ z2+1 ) -3 ------------------- Equation1
Now,
x2+y2+ z2
(x+y+z)2 =x2+y2+ z2+ 2 (xy+yz+zx)
(1)2 =x2+y2+ z2+2(-1)
1 =x2+y2+ z2-2
3=x2+y2+ z2----------------------------- Equation 2
Putting values of 2 on 1, we get
x3+y3+z3= (1) (3+1 ) -3
x3+y3+z3= (1) (4) -3
x3+y3+z3 = 1
x3+y3+z3=(x +y + z) (x2+y2+ z2yz zx xy) + 3xyz ( Rearranging the terms)
Putting the values,
x3+y3+z3= (1) {(x2+y2+ z2- ( -1)} +3 (-1)
x3+y3+z3= (1) (x2+y2+ z2+1 ) -3 ------------------- Equation1
Now,
x2+y2+ z2
(x+y+z)2 =x2+y2+ z2+ 2 (xy+yz+zx)
(1)2 =x2+y2+ z2+2(-1)
1 =x2+y2+ z2-2
3=x2+y2+ z2----------------------------- Equation 2
Putting values of 2 on 1, we get
x3+y3+z3= (1) (3+1 ) -3
x3+y3+z3= (1) (4) -3
x3+y3+z3 = 1
Answered by
13
Question-
If x + y + z = 1, xy + yz + zx = -1 and xyz= -1, find the value of x³ + y³ + z³.
Answer-
x³ + y³ + z³ – 3xyz = (x + y + z) (x² + y² + z² – xy – yz – zx)
=> x³ + y³ + z³ – 3xyz = (x + y + z) (x² + y² + z² + 2xy + 2yz + 2zx – 3xy – 3yz – 3zx)
(Subtracting and adding 2xy + 2yz + 2zx)
=> x³ + y³ + z³ – 3xyz = (x + y + z) {(x + y + z)² – 3(xy + yz + zx)}
=> x³ + y³ + z³ – 3 x (-1) = 1 x {(1) 2 – 3 x (-1)}
[Putting x + y + z = 1; xy + yz + zx = -1; xyz = -1]
=> x³ + y³ + z³ + 3 = 4
=> x³ + y³ + z³ = 4 – 3
x³ + y³ + z³ = 1
Similar questions