Math, asked by mamtajanghel1428, 11 months ago

if x+y+z=10 and x^2+y^2+z^2=40, then find xy+yz+zx​

Answers

Answered by paytmM
233

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

\large{\underline{\underline{\mathfrak{\pink{\sf{Given\:Here:-}}}}}}.

\:x+y+z\:=\:10.........(1).

\:x^2+y^2+z^2\:=\:40.......(2).

\large{\underline{\underline{\mathfrak{\green{\sf{Find\:Here:-}}}}}}.

\:Value\:of\:xy+yz+zx.

\large{\underline{\underline{\mathfrak{\green{\sf{Explanation:-}}}}}}.

➡We know that

\:(a+b+c)^2\:=a^2+b^2+c^2+2(ab+bc+ca).

➡Squaring both side. of (1) equation .

\implies\:(x+y+z)^2\:=10^2.

\implies\:(x^2+y^2+z^2)\:+\:2(xy+yz+zx)\:=100.

➡Keep value by (1) And (2).

\implies\:(40)\:+\:2(xy+yz+zx)\:=\:100.

\implies\:2(xy+yz+zx)\:=\:100\:-\:40.

\implies\:(xy+yz+zx)\:=\frac{60}{2}.

\implies\:(xy+yz+zx)\:=\:30.

_________________

Similar questions