Math, asked by ManaswiGupta, 9 months ago

if x+y+z=10 and x²+y²+z²=40,then find xy+yz+zx
help me pls​

Answers

Answered by Anonymous
2

Answer:-

The value of xy+yz+zx is 30.

Given:

  • x+y+z=10

  • \sf{x^{2}+y^{2}+z^{2}=40}

To find:

  • The value of xy+yz+zx.

Solution:-

According to the identity

\sf{(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ac)}

\sf{(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(xy+yz+zx)}

\sf{\therefore{10^{2}=40+2(xy+yz+zx)}}

\sf{\therefore{100=40+2(xy+yz+zx)}}

\sf{\therefore{2(xy+yz+zx)=100-40}}

\sf{\therefore{2(xy+yz+zx)=60}}

On dividing both sides by 2, we get

\sf{xy+yz+zx=30}

\sf{\therefore} The value of xy+yz+zx is 30.

Answered by Anonymous
2

Given :

x + y + z = 10 and x² + y² + z² = 40

To find :

The value of (xy + yz + xz) ?

Solution :

 \sf Using  \: identity  \:  \fbox{ {(a + b + c)}^{2} =  {a}^{2}  +  {b}^{2}  +  {c}^{2} + 2(ab + bc + ac)  } \: , \: we \: get

</p><p>\Rightarrow \sf</p><p> {(10)}^{2}  = 40 + 2(xy + yz + xz) \\  \\</p><p>\Rightarrow \sf</p><p> 100 = 40  + 2(xy + yz + xz) \\  \\</p><p>\Rightarrow \sf</p><p> 60 = 2(xy + yz + xz) \\  \\</p><p>\Rightarrow \sf</p><p>(xy + yz + xz) =  \frac{60}{2}  \\  \\</p><p>\Rightarrow \sf</p><p> (xy + yz + xz) = 30

 \therefore \sf \underline{The \:  value  \: of   \: (xy + yz + xz) \:  is  \: 30}

Similar questions