Math, asked by simrankhatana3850, 11 months ago

If x+y+z=10; x^2+y^2+z^2=20; and x^3+y^3+z^3=40 then what is xyz

Answers

Answered by RvChaudharY50
29

Answer:

we know, (x+y+z)² = x²+y²+z²+2(xy+yz+zx)

putting given values we get,

10² = 20+2(xy+yz+zx)

100–20 = 2(xy+yz+zx)

(xy+yz+zx) = 40

now, we also know that,

x ³ + y ³ + z ³ - 3xyz = (x + y + z) (x ² + y ² + z ²-xy -xz- yz)

putting values again ,

40-3xyz = 10(20-40)

3xyz = 40+200

xyz = 240/3 = 80 (Ans)

<font color=red><marquee behaviour=alternate>_/\_мαяк ⓐⓢ вяαiηℓisт_/\_</marquee></font>

<font color=green><marquee behaviour=alternate>❤️Follow Me❤️</marquee></font>

Answered by ItzCuteChori
0

\huge{\boxed{\red{\boxed{\mathfrak{\pink{Solution}}}}}}

we know, (x+y+z)² = x²+y²+z²+2(xy+yz+zx)

putting given values we get,

10² = 20+2(xy+yz+zx)

100–20 = 2(xy+yz+zx)

(xy+yz+zx) = 40

now, we also know that,

x ³ + y ³ + z ³ - 3xyz = (x + y + z) (x ² + y ² + z ²-xy -xz- yz)

putting values again ,

40-3xyz = 10(20-40)

3xyz = 40+200

xyz = 240/3 = 80 (Ans)

Similar questions