If x+ y+ z = 12 ,xy + yz + zx= 37 Xsquare + y square+ z square = 70 then find x,y,z
Answers
•Given:- x+ y+ z = 12 ,xy + yz + zx= 37 Xsquare + y square+ z square = 70
• To find:- the value of x,y,z
•Solution:-
According to the question,
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
or,12² = 70 + 2(37)
or,144 = 70 + 74
or, 144 = 144
as there are 3 equations and we will get
x = √37i y = -√37 i z = 12.....(1)
x = -√37i y = √37 i z = 12 .....(2)
x = 12 y = -√37 i z=√37i......(3)
x = 12. y = √37 i z= -√37i....(4)
x = √37i y = 12 z = -√37 i ....(5)
x = -√37i y = 12. z = √37 i ....(6)
if we put any kind of value of x, z and y from above
So we can get...
according to (1)
x² + y² + z² = -37 - 37 + 144 = 70 (i² = -1)
or,x + y + z = √37 i -√37 i + 12 = 12
or,xy + yz + zx = (√37i) × (-√37 i) + (-√37i) 12 + (√37i) 12 = 37
according to (2)
x² + y² + z² = -37 - 37 + 144 = 70 (i² = -1)
or,x + y + z = -√37 i +√37 i + 12 = 12
or,xy + yz + zx = (-√37i) × (√37 i) + (√37i) 12 + (-√37i) 12 = 37
according to (3)
x² + y² + z² =144-37-37 = 70 (i² = -1)
or,x + y + z = 12-√37i+√37i = 12
or,xy + yz + zx = (-√37i) 12+(√37i) × (-√37 i)+ (√37i) 12 = 37
according to (4)
x² + y² + z² =144-37-37 = 70 (i² = -1)
or,x + y + z = 12+√37i-√37i = 12
or,xy + yz + zx = (√37i) 12+(√37i) × (-√37 i)+ (-√37i) 12 = 37
according to (5)
x² + y² + z² = -37 + 144 - 37= 70 (i² = -1)
or,x + y + z = √37 i +12 -√37 i = 12
or,xy + yz + zx = (√37i) 12 +(-√37i) 12 + (-√37i) × (√37 i)= 37
according to (6)
x² + y² + z² = -37 + 144 - 37= 70 (i² = -1)
or,x + y + z = -√37 i +12 +√37 i = 12
or,xy + yz + zx = (-√37i) 12 +(√37i) 12 + (-√37i) × (√37 i)= 37