if x + y + z = 14 and xy + yz + zx = 7 then find x³ + y³ + z³ - 3xyz
Attachments:
Answers
Answered by
10
Given:
- x + y + z = 14
- xy + yz + zx = 7
To find:
x³ + y³ + z³ - 3xyz = ?
Solution:
Given that:
x + y + z = 14
Squaring on both sides,
(x + y + z)² = 14²
⇒ x² + y² + z² + 2(xy + yz + zx) = 196
⇒ x² + y² + z² + 2(7) = 196
⇒ x² + y² + z² = 182 ---- [Equation 1]
Now, for further solving this question apply a formula of algebra and substitute for the given values.
x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
This can also be written as:
x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - (xy + yz + zx))
⇒ x³ + y³ + z³ - 3xyz = 14 (182 - 7)
⇒ x³ + y³ + z³ - 3xyz = 14 (175)
⇒ x³ + y³ + z³ - 3xyz = 2450
∴ x³ + y³ + z³ - 3xyz = 2450
Similar questions