If x + y + z = 15 and x² + y² + z² = 33. Find the value of x³ + y³ + z³ - 3xyz
Answers
Answered by
27
(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx)
15^2 = 33 + 2(xy + yz + zx)
225 - 33 = 2(xy + zy + zx)
xy + yz + zx = 96
x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)
= 15(33 - 96)
= -945
15^2 = 33 + 2(xy + yz + zx)
225 - 33 = 2(xy + zy + zx)
xy + yz + zx = 96
x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)
= 15(33 - 96)
= -945
Answered by
10
(X+y+z)^2. = x^2 + y^2 +z^2+2(xy + yz+ xz)
15^2 = 33+2(xy+yz+xz)
225 - 33 = 2(xy+yz+xz)
192/2. =xy + yz+zx
96. = xy+ yz+zx
x^3 + y^3 +z^3 - 3xyz = ( x+ y+ z)(x^2 + y^2 + z^2- xy - zx- xz)
= 15(33-96)
= 15 * -63 = - 945
15^2 = 33+2(xy+yz+xz)
225 - 33 = 2(xy+yz+xz)
192/2. =xy + yz+zx
96. = xy+ yz+zx
x^3 + y^3 +z^3 - 3xyz = ( x+ y+ z)(x^2 + y^2 + z^2- xy - zx- xz)
= 15(33-96)
= 15 * -63 = - 945
Dhairya:
but is the answer correct ???
Similar questions