If x+y+z=16, and xy+yz+zx =11 find x2+y2+z2
Answers
Answered by
4
Answer:
Step-by-step explanation:
Given x+y+z=6 xy+yz+zx=10 To find x3+y3+z3−3xyz = ? ⇒ Using formula,
⇒(x+y+z)2= ⇒ Using formula,
⇒(x+y+z)2=
x2+
y2+
z2+
2(xy+yz+zx)
⇒62=x2+y2+z2+2×10⇒36=x2+y2+z2+20⇒x2+y2+z2=16
⇒x2+y2+z2−3xyz=
(x+y+z)
(x2+y2+z2−xy−yz−zx)
⇒x2+y2+z2−3xyz=6[16−10]⇒x2+y2+z2−3xyz=6×6⇒x2+y2+z2−3xyz=36
Answered by
5
Answer :
Explanation :
Given :–
- x + y + z = 16
- xy + yz + zx = 11
To Find :–
- Value of x² + y² + z² = ?
Formula Used :–
Solution :–
We have x + y + z = 16 and xy + yz + zx = 11 .
Putting these values in the Formula :
∴ The value of x² + y² + z² is 234 .
Some More Useful Formulae :-
→ (x + y)³ = x³ + y³ + 3xy(x + y)
→ (x - y)³ = x³ - y³ - 3xy(x - y)
→ x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz -zx)
[Note : If x + y+ z = 0 then x³ + y³ + z³ = 3xyz .]
Similar questions
Math,
4 months ago
Math,
4 months ago
Social Sciences,
8 months ago
Business Studies,
11 months ago
English,
11 months ago
Science,
11 months ago