Math, asked by mvrvenky10, 10 months ago

If x+y+z=19, xyz= 216 and xy+ yz+ zx = 144, then the value of √x³+y³+z³+xyz is

Answers

Answered by RISH4BH
87

Given :

  • x + y + z = 19.
  • xy + yz + zx = 144.
  • xyz = 216.

To Find:

  • The value of √x³+y³+z³ +xyz.

Answer:

Now here given that ,

=> (x+y+z) = 19.

=> (x+y+z)² = 19².

=> x²+y²+z²+2(xy+yz+zx) = 361.

=> x²+y²+z² +2(144) = 361.

=> x²+y²+z² = 361 - 288.

=> ++ = 73.

______________________________________

Also we know a formula ,

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca).

Till now we know that

  1. x²+y²+z² = 73.
  2. x + y + z = 19.
  3. xy + yz + zx = 144.
  4. xyz = 216.

Substituting the respective values,

=>x³+y³+z³-3×216=(19)×[73-(144)]

=> x³+y³+z³-648= 19× (-71).

=> x³+y³+z³ = -1349+648

=> ++z³=701.

_____________________________________

Hence x³+++xyz

= √ 701 + 216

= √ 917

= 30.28 30

Similar questions