If x+y+z=19, xyz= 216 and xy+ yz+ zx = 144, then the value of √x³+y³+z³+xyz is
Answers
Answered by
87
Given :
- x + y + z = 19.
- xy + yz + zx = 144.
- xyz = 216.
To Find:
- The value of √x³+y³+z³ +xyz.
Answer:
Now here given that ,
=> (x+y+z) = 19.
=> (x+y+z)² = 19².
=> x²+y²+z²+2(xy+yz+zx) = 361.
=> x²+y²+z² +2(144) = 361.
=> x²+y²+z² = 361 - 288.
=> x²+y²+z² = 73.
______________________________________
Also we know a formula ,
→ a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca).
Till now we know that
- x²+y²+z² = 73.
- x + y + z = 19.
- xy + yz + zx = 144.
- xyz = 216.
Substituting the respective values,
=>x³+y³+z³-3×216=(19)×[73-(144)]
=> x³+y³+z³-648= 19× (-71).
=> x³+y³+z³ = -1349+648
=> x³+y³+z³=701.
_____________________________________
Hence √x³+y³+z³+xyz
= √ 701 + 216
= √ 917
= 30.28 ≈ 30
Similar questions