if x+y+z=5 and xy+yz+xz=10, then find the value of x^3+y^3+z^3-3xyz.
Answers
Answered by
8
• x + y + z = 5
• xy + yz + zx = 10
• The value of x³ + y³ + z³ - 3xyz
Formula to be used :-
• x³ + y³ + z³ - 3xyz
= ( x + y + z) ( x² + y² + z² - xy - yz - zx)
• (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2xz
At first, we need to find the value of x² + y² + z²
We know,
(x + y + z)² = x² + y² + z² + 2xy + 2yz + 2xz
⟶ x² + y² + z² = (x + y + z)² -( 2xyb + 2yz + 2xz)
⟶ x² + y² + z² = 5² -2(10)
⟶ x² + y² + z² = 25 - 20
⟶ x² + y² + z² = 5
Hence, value of x² + y² + z² is = 5.
________________________________________________
Now,
x³ + y³ + z³ - 3xyz
Put the given values in the formula
= ( x + y + z) ( x² + y² + z² - xy - yz - zx)
= 5 {5 - ( 10) }
= -25
Hence, value of x³ + y³ + z³ - 3xyz is = -25
Similar questions