If x + y − z = 5, x 2 + y 2 + z 2 = 29; find the value of xy − yz − xz
Answers
Answered by
2
Given
x+y+z=1,xy+yz+zx=−1 and xyz=−1
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
x3+y3+z3−3(−1)=1(x2+y2+z2)−(−1)
x3+y3+z3+3=x2+y2+z2+1
x3+y3+z3+2=x2+y2+z2
(x+y+z)2=x2+y2+z2+2xy+2yz
hope it helps you....
Answered by
23
Step-by-step explanation:
✯Given:-
x + y - z = 5
x² + y² + z² = 29
✯To find:-
xy - yz - xz
✯Solution:-
We know that ,
(x+y-z)² = x²+y²+z²+ 2(xy-yz-xz)
Using this identity,
(5)² = 29 + 2(xy-yz-xz)
25 = 29 + 2(xy-yz-xz)
2(xy-yz-xz) = 25-29
2(xy-yz-xz)= -4
xy-yz-xz = -4 ÷ 2
xy-yz-xz=-2
xy-yz-xz= -2
Hope it helps
Mark me as Brainliest
More info:-
Some identities :-
- (a+b)² = a²+b²+2ab
- (a+b)²=(a+b)(a+b)
- (a-b)²=(a-b)(a-b)
- a²+b² = (a+b)² - 2ab
- a²+b² = (a-b)² + 2ab
- a²-b² = (a-b)(a+b)
- (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
- (a+b)³ = a³+b³+3ab(a+b)
- a³+b³ = (a+b)(a²+b²-ab)
- (a-b)³ = a³-b³-3ab(a-b)
- a³-b³ = (a-b)(a²+b²+ab)
Similar questions