If x+y+z=6 and x^2+y^2+z^2=20 then the value of x^3+y^3+z^3-3xyz is
Answers
Answered by
57
Given:-)
→ x + y + z = 6.
→ x² + y² + z² = 20.
To find:-)
→ x³ + y³ + z³ - 3xyz.
▶We have,
=> x + y + z = 6.
[ Squaring both side ].
=> ( x + y + z ) ² = 6².
=> x² + y² + z² + 2 ( xy + yz + zx ) = 36.
=> 20 + 2 ( xy + yz +zx ) = 36.
=> 2 ( xy + yz + zx ) = 36 - 20.
=> xy + yz + zx = 16/2.
=> xy + yz + zx = 8.
▶ Now,
=> x³ + y³ + z³ - 3xyz = ( x + y + z ) ( x² + y² + z² - ( xy + yz + zx )
= ( 6 ) ( 20 - ( 8 ) ).
= 6 × 12.
= 72.
✔✔Hence, it is solved ✅✅.
____________________________________
TheUrvashi:
Nice one ☻
Answered by
42
▶x+y+z=6
▶x²+y²+z²=20
x³+y³+z³-3xyz
▶x+y+z=6
▶(x+y+z)²=(6)²
▶x²+y²+z²+2(xy+yz+zx)=36
▶20+2(xy+yz+zx)=36
▶2(xy+yz+zx)=36-20
▶2(xy+yz+zx)=16
▶xy+yz+zx=16/2
▶xy+yz+zx=8
(x+y+z)(x²+y²+z²-(xy+yz+zx))
6(20-8)
6×12
72
Similar questions