Math, asked by bigil3456, 10 months ago

if X + Y + Z = 6 and X square + Y square + Z square = 18 then find x cube + y cube + Z cube - 3 x y z​

Answers

Answered by MaheswariS
1

\textbf{Given:}

x+y+z=6

x^2+y^2+z^2=18

\text{We know that}

\boxed{\bf\;(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)}

\implies(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)}

\implies(6)^2=18+2(xy+yz+zx)

\implies\;36-18=2(xy+yz+zx)

\implies\;18=2(xy+yz+zx)

\implies\;xy+yz+zx=9

\text{We know that}

\boxed{\bf\;a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))}

\implies\;x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-(xy+yz+zx))

\implies\;x^3+y^3+z^3-3xyz=(6)(18-9)

\implies\;x^3+y^3+z^3-3xyz=(6)(9)

\implies\boxed{\bf\;x^3+y^3+z^3-3xyz=54}

Similar questions