if x+y+z=6 and x square +ysquare+zsquare=18 then find xcube+ycube+zcube-3xy
Answers
Answered by
0
Answer:
X=1,Y=1,Z=4,Answer=63
Explanation:
x+y+z=6(1+1+4=6)
x²+y²+z²=18(1²+1²+4²=1+1+16=18)
So, x³+y³+z³-3xy=1³+1³+4³-3*1*1
=1+1+64-3=63
That's the answer
Answered by
2
Explanation:
Given -
- x + y + z = 6
- x² + y² + z² = 18
To Find -
- Value of x³ + y³ + z³ - 3xyz
As we know that :-
- x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
Now,
⇝x + y + z = 6
Squaring both sides :-
⇝(x + y + z)² = (6)²
⇝x² + y² + z² + 2(xy + yz + zx) = 36
⇝2(xy + yz + zx) = 36 - 18
⇝xy + yz + zx = 9
⇝-1(-xy - yz - zx) = 9
⇝-xy - yz - zx = -9
Now,
⇝x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⇝(6)(18 - 9)
⇝ 6 × 9
⇝54
Hence,
The value of x³ + y³ + z³ - 3xyz is 54.
Similar questions
English,
4 months ago
Science,
4 months ago
English,
4 months ago
Math,
9 months ago
Social Sciences,
1 year ago