If x + y + z = 6 and xy + yz + zx = 12, then show that x³ + y³ + z³ = 3xyz
Answers
ᏩᏆᏙᎬN :-
If x+y+z=6 and xy+yz+zx=12
ᎢᎾ ᏚᎻᎾᏔ :-
x³ + y³ +z³ =3xyz
ᏢᎡᎾᎾF :-
ᴀᴄᴄᴏʀᴅɪɴɢ ᴛᴏ ᴛʜᴇ ǫᴜᴇsᴛɪᴏɴ,
➡x³ +y³+z³−3xyz=(x+y+z)(x²+y²+z²−xy−yz−zx)
➡(6){(x+y+z)² −2xy−2yz−2zx−xy−yz−zx}
➡(6){(x+y+z)²−3xy−3yz−3zx}
➡(6){(x+y+z)²−3(xy+yz+zx)}
➡(6)(6² −3×12)
➡(6)(36−36)
➡0
Therefore,
✒ x³ + y³ + z³ = 3xyz
_______________________________
Given in the question..
x + y + z = 6.
xy + yz + zx = 12.
Now, solving step by step..
We know the formula that was:-
=> x³ + y³ + z³ – 3xyz.
=>( x + y + z ) ( x² + y² + z² – xy – yz – zx )..
We know that x + y + z = 6 ( Given )...1⃣
& xy + yz + zx = 12 ( Given )....2⃣
=> ( 6 ) {( x + y + z )²–2xy–2yz–2zx–xy–yz – zx }
=> ( 6 ) {( x + y + z )² – 3xy – 3yz – 3zx }
=> ( 6 ) {( x + y + z )² – 3 ( xy – yz – zx ) }
Now we place the value of 1⃣ & 2⃣ and here. We get.
=> ( 6 ) {( 6² — 3 × 12 }
=> ( 6 ) { 36 — 36 }
=> ( 6 ) 0
=> 0
Therefore, x³ + y³ + z³ = 3xyz..
I hope that this help you..
Thank You..
Stay Home Stay Safe..
KEEP Learning and Asking...