If x + y +z= 6, find the value of ,
(2 − x)^3 + (2 − y)^3 + (2 − z)^3 − 3(2 − x)(2 − y)(2 − z)
Answers
Answered by
2
x= y =z = 2
If x +y+z =0 then
Then x^ + y^3+ z^3 = 3 xyz
Now ( 2-2 )^3 + (2-2)^3+(2-2)^3 =0
So ans is 3 (2-x) (2-y)(2-z)
If x +y+z =0 then
Then x^ + y^3+ z^3 = 3 xyz
Now ( 2-2 )^3 + (2-2)^3+(2-2)^3 =0
So ans is 3 (2-x) (2-y)(2-z)
Answered by
0
0
Explanation:
Given, x + y +z= 6
consider x = 2, y = 2, z = 2
Substitute the above values in the given equation
(2 − x)^3 + (2 − y)^3 + (2 − z)^3 − 3(2 − x)(2 − y)(2 − z)
(2 − 2)^3 + (2 − 2)^3 + (2 − 2)^3 − 3(2 − 2)(2 − 2)(2 − 2)
0 + 0 + 0 - 3(0) = 0
when x + y +z= 6
(2 − x)^3 + (2 − y)^3 + (2 − z)^3 − 3(2 − x)(2 − y)(2 − z) = 0
#SPJ2
https://brainly.in/question/35850875
https://brainly.in/question/49001660
Similar questions