if x+y+z =6 x^2 + y^2 +z^2 = 18 then find x^3 + y^3 + z^3
Answers
Answered by
1
Answer:
Correction: It is x³+y³+z³-3xyz, instead of x³+y³+z³.
GIVEN:
x+y+z=6
x²+y²+z²=18
RTF:
x³+y³+z³-3xyz.
SOLUTION:
⇒ x + y + z = 6.
We need to square both sides.
⇒ ( x + y + z ) ² = 6².
⇒ x² + y² + z² + 2xy + 2yz + 2zx = 36.
Substitute x²+y²+z²=18 and take out "2" common from the underlined part.
⇒ 18 + 2 ( xy + yz +zx ) = 36.
⇒ 2 ( xy + yz + zx ) = 36 - 18.
⇒ xy + yz + zx = 18÷2.
⇒ xy + yz + zx = 9.
Now we use this formula: x³ + y³ + z³ - 3xyz = ( x + y + z )( x² + y² + z² - ( xy + yz + zx )
Substitute x+y+z=6, x²+y²+z²=18 and xy + yz + zx = 9.
⇒ ( 6 ) ( 18 - ( 9 ) ).
⇒ 6 × 9.
⇒ 54.
#quality
Similar questions