Math, asked by kumarhitesh5670, 1 year ago

If x + y + z = 6, xy + yz + zx = 11. Find the value of x2 + y2 + z2

Answers

Answered by abhi569
111
(x + y + z) = 6 

Square on both sides,

(x + y + z)^2 = 6^2 

x^2 + y^2 + z^2 + 2(xy + yz + zx) = 36 

x^2 + y^2 + z^2 + 2(11) = 36 

x^2 + y^2 + z^2 + 22 = 36 

x^2 + y^2 + z^2 =36 - 22 

x^2 + y^2 + z^2 = 14 



i hope this will help you


(-:
Answered by Anonymous
78
Heya ✋

Let see your answer !!!!!

Given that

x + y + z = 6
xy + yz + zx = 11
x ^{2}  + y ^{2}  + z ^{2}  =

Solution

x + y + z = 6 \\  =  > on \: squaring \: both \: sides \\  = >  (x + y + z) ^{2}  = (6) ^{2}  \\  =  > x ^{2}  + y ^{2}  + z ^{2}  + 2xy +  \\ 2yz + 2zx = 36 \\  =  > x ^{2}  + y ^{2}  + z ^{2}  + 2(xy +  \\ yz + zx) = 36 \\  =  > x ^{2}  + y ^{2}  + z ^{2}  + 2 \times 11 =  \\ 36 \\  =  > x ^{2}  + y ^{2}  + z ^{2}  + 22 = 36 \\  =  > x ^{2}  + y ^{2}  + z ^{2}  = 36 - 22 \\  =  > x ^{2}  + y ^{2}  + z ^{2}  = 14





Thanks :)))))
Similar questions