Math, asked by aasthaktalajia, 18 hours ago

if x + y + z = 6 , xyz = 6 and xy + yz + zx = 11, then find x3+y3+z3​

Answers

Answered by Choudharipawan123456
2

According to the question,

It is given that,

x + y + z = 6

xyz=6

xy + yz + zx = 11

To find:- the value of x^3+y^3+z^3

By using the identity,

(x+y+z)^3=x^3+y^3+z^3+3[(x+y+z)(xy+yz+xz)-(xyz)]...(1)

Now, by substituting the given values in the equation (1) we get,

=>(6)^3=x^3+y^3+z^3+3[6\times11-6]

By simplifying the left side we get,

=>216=x^3+y^3+z^3+3[6\times11-6]

Multiply 6 with 11 we get,

=>216=x^3+y^3+z^3+3(66-6)

Now, subtract the bracket terms, we get

=>216=x^3+y^3+z^3+3(60)

Multiplying 3 with 60 we get,

=>216=x^3+y^3+z^3+180

=>216-180=x^3+y^3+z^3

=>36=x^3+y^3+z^3

Hence, the required value of x^3+y^3+z^3 is 36.

Answered by gausia8080
0

Given,

x+y+z=6,

xyz=6,

And

xy+yz+zx=11

By using the (x+y+z)^{3} identity to solve the given

(x+y+z)^{3}=x^{3}+y^{3}+z^{3}+3[(x+y+z)(xy+yz+xz)-(xyz)]

Substitute the given values in this identity

(6)^{3}=x^{3}+y^{3}+z^{3}+3[(6)(11)-6]

216=x^{3}+y^{3}+z^{3}+3[66-6]

216=x^{3}+y^{3}+z^{3}+3\times60

216=x^{3}+y^{3}+z^{3}+180

x^{3}+y^{3}+z^{3}=216-180

x^{3}+y^{3}+z^{3}=36

Therefore, the value of x^{3}+y^{3}+z^{3} is 36.

Similar questions