if x+y+z=8 and xy+yz+zx =20 find the value of x ^3 +y^3 +z^3-3xyz
Answers
Answered by
8
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
+x+y+z=8
+xy+yz+zx=20
8(x^2+y^2+z^2-20)
now firstfind the value of x^2+y^2+z^2
so for that put the identity(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
8^2=x^2+y^2+z^2+2(20)
24=x^2+y^2+z^2
now back to the part...
8(24-20)
=8×4
=32
+x+y+z=8
+xy+yz+zx=20
8(x^2+y^2+z^2-20)
now firstfind the value of x^2+y^2+z^2
so for that put the identity(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
8^2=x^2+y^2+z^2+2(20)
24=x^2+y^2+z^2
now back to the part...
8(24-20)
=8×4
=32
Answered by
18
mark me as brainlist please
Sudhir1188:
thanks
Similar questions
Social Sciences,
8 months ago
Science,
8 months ago
Environmental Sciences,
1 year ago
Economy,
1 year ago
Science,
1 year ago