Math, asked by Nikitatiwari, 1 year ago

if x+y+z=8 and xy+yz+zx =20 find the value of x ^3 +y^3 +z^3-3xyz

Answers

Answered by mittalsanket09p33wz8
8
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
+x+y+z=8
+xy+yz+zx=20
8(x^2+y^2+z^2-20)
now firstfind the value of x^2+y^2+z^2
so for that put the identity(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
8^2=x^2+y^2+z^2+2(20)
24=x^2+y^2+z^2
now back to the part...
8(24-20)
=8×4
=32
Answered by Sudhir1188
18

x + y + z =8 \\   squaring \: both \: the \: sides \\   (x + y + z) {}^{2}  = (8) {}^{2}  \\ x {}^{2}  + y {}^{2}  + z {}^{2}  + 2(xy + yz + zx) = 64 \\  here \: xy + yz + xz = 20 \\  x {}^{2}  + y {}^{2}  + z {}^{2}  + 2(20) = 64 \\ x {}^{2}  + y {}^{2}  + z {}^{2}  + 40 = 64 \\ x {}^{2}  + y {}^{2}  + z {}^{2}   = 64 - 40 \: ( = 24) \\ x {}^{2}  + y {}^{2}  + z {}^{2}  = 24 \\  \\  \\  \\ x {}^{3}  + y {}^{3}  + z {}^{3}  - 3xyz = (x + y + z)(x {}^{2}  + y {}^{2}  + z {}^{2}  - xy - yz - xz) \\ (8)(24 - (20) \\ 8 \times 4 = 32
mark me as brainlist please

Sudhir1188: thanks
Sudhir1188: any more questions
Sudhir1188: ok
Similar questions