If x + y+z=9 &xy+yz+zx=23 then the value of x^3+y^3+z^3-3xyz=?
Answers
Answered by
0
\left[x _{1}\right] = \left[ \frac{\sqrt[3]{\left( \frac{\left( -27\right) \,y^{3}}{2}+\frac{\left( -27\right) \,z^{3}}{2}+\frac{\sqrt{\left( 729\,y^{6} - 2916\,yz^{3}+1458\,y^{3}\,z^{3}+729\,z^{6}\right) }}{2}\right) }}{3}+\frac{3\,\sqrt[3]{2}\,yz}{\sqrt[3]{\left( \left( -27\right) \,y^{3} - 27\,z^{3}+\sqrt{\left( 729\,y^{6} - 2916\,yz^{3}+1458\,y^{3}\,z^{3}+729\,z^{6}\right) }\right) }}\right][x1]=⎣⎢⎢⎢⎢⎡33√(2(−27)y3+2(−27)z3+2√(729y6−2916yz3+1458y3z3+729z6))+3√((−27)y3−27z3+√(729y6−2916yz3+1458y3z3+729z6))33√2yz⎦⎥⎥⎥⎥⎤ Algebra functional value
Answered by
1
Answer:
Answer:
Similar questions