Math, asked by sequeirajerome21, 1 year ago

If x + y+z=9 &xy+yz+zx=23 then the value of x^3+y^3+z^3-3xyz=?

Answers

Answered by Shivam96419
2

Given x + y + z = 9 , xy + yz + zx = 23

 Consider, x + y + z = 9

 Squaring on both sides,

we get (x + y + z)2 = 81

x2 + y2 + z2 +2(xy + yz +zx) = 81

x2 + y2 + z2 = 81 − 2(xy + yz +zx) = 81−

2(23) = 81 − 46 = 35 

∴ x2 + y2 + z2 = 35

 We know that

x3 + y3 + z3 − 3xyz = (x + y + z)( x2 + y2 + z2 − xy − yz − zx) = 9(35 −23) = 9(12) = 32

x2 and others are read as x square

hope it helps you

plz follow me

MARK it as BRAINLIEST

Answered by Anonymous
0

Answer:

Given:\ x+y+z=8 \\ xy+yz+zx=20 \\ To \: find\: x^{3}+y^{3}+z^{3}-3xyz =?

Answer:

 x+y+z=8 --------eq 1 \\ xy+yz+zx= 20 ----eq2 \\ squaring\:both\: side \\ x^{2}+y^{2} +z^{2}+2xy+2yz +2zx \\ x^{2}+y^{2}+z^{2}+2(xy+yz +zx ) \\ x^{2}+y^{2}+z^{2}+2(20)=64 \\ x^{2}+y^{2}+z^{2}= 64-40 =24 \\by:\ eq2 \\ x^{3}+y^{3}+z^{3}-3xyz(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx) \\ x^{3}+y^{3}+ z^{3}-3xyz=8(24-20) \\ x^{3}+y^{3}+z^{3}+3xyx=8(4) \\ x^{3}+y^{3}+z^{3}-3xyz= 32 Answer.

Step-by-step explanation:

hope it helps

Similar questions