If x +y+z=9 and xy+yz+xz=26 find the value of x^2+y^2+z^2
Answers
Answered by
1
Answer:
x+y+z=9
xy+yz+xz=26
(x+y+z)² = x²+y²+z²+2xy+ 2yz+ 2xz
(9)²= x²+y²+z² + 2(xy+yz+xz)
81= x²+y²+z²+ 2(26)
81-52=x²+y²+z²
x²+y²+z²= 29
Answered by
0
Answer = 29.
(x+y+z)^2 = x^2 + y^2 +z^2 + 2(xy + yz + zx).
x^2 + y^2 + z^2 = (x + y + z)^2 - 2( xy +yz +zx )
= (9)^2 - 2(26)
= 81 - 52
= 29.
Similar questions